Regression analysis advanced (analysis)
From BioUML platform
- Analysis title
- Regression analysis advanced
- Provider
- Institute of Systems Biology
- Class
RegressionAnalysisAdvanced
- Plugin
- biouml.plugins.machinelearning (Machine learning)
Description
Create and save regression model or load regression model for prediction of response or cross-validation of regression model.
Parameters:
- Regression mode – Select regression mode
- Regression type – Select regression type
- Path to data matrix – Path to table or file with data matrix
- Variable names – Select variable names
- Response name – Select response name
- Path to folder with saved model – Path to folder with saved model
- Parameters for OLS-regression – Please, determine parameters for Odinary least squares regression
- Max number of rotations – Maximal number of rotations for calculation of inverse matrix or eigen vectors
- Epsilon for rotations – Epsilon for calculation of inverse matrix or eigen vectors
- Parameters for WLS-regression – Please, determine parameters for Weighted least squares regression
- Max number of rotations – Maximal number of rotations for calculation of inverse matrix or eigen vectors
- Epsilon for rotations – Epsilon for calculation of inverse matrix or eigen vectors
- Parameters for PC-regression – Please, determine parameters for Principal component regression
- Max number of rotations – Maximal number of rotations for calculation of inverse matrix or eigen vectors
- Epsilon for rotations – Epsilon for calculation of inverse matrix or eigen vectors
- Number of principal components – Number of principal components
- Principal component sorting type – Sorting type of principal components
- Parameters for Tree-based regression – Please, determine parameters for Tree-based regression
- Minimal node size – Minimal size of node
- Minimal variance – Minimal variance
- Parameters for Ridge regression – Please, determine parameters for Ridge regression
- Max number of rotations – Maximal number of rotations for calculation of inverse matrix or eigen vectors
- Epsilon for rotations – Epsilon for calculation of inverse matrix or eigen vectors
- Shrinkage parameter – Shrinkage parameter, k >= 0
- Parameters for combined regression – Please, determine parameters for combined regression
- Number of regressions – Number of regressions
- Regressions type – Select regressions type
- Number of variables for regressions – Number of variables for each regression
- Number of outlier detection steps – Number of outlier detection steps
- Multiplier for sigma, t – Observation x is outlier if Abs(x - predicted x) > t * sigma
- Classification type – Select classification type
- Number of variables for classification – Number of variables for classification
- Type of variable selection in classification – Type of variable selection in classification
- Parameters for cross-validation – Please, determine parameters for cross-validation
- Percentage of data for training – Proportion (in %) of data for training
- Parameters for variable selection – Parameters for variable selection
- Number of selected variables – Number of selected variables
- Variable selection criterion – Please, determine variable selection criterion
- Variable selection type – Please, determine variable selection type
- Parameters for outlier detection – Parameters for outlier detection
- Multiplier for sigma, t – Observation x is outlier if Abs(x - predicted x) > t * sigma
- Number of outlier detection steps – Number of outlier detection steps
- Path to output folder – Path to output folder